
## The University of Texas at Austin Dell Medical School

# Moderate Alcohol Drives Splenocyte Transcriptional Changes in a Murine Model of Multiple Sclerosis

Blaine Caslin<sup>1</sup>, Cole Maguire<sup>1</sup>, Esther Melamed<sup>1</sup> <sup>1</sup>Dell Medical School, Department of Neurology

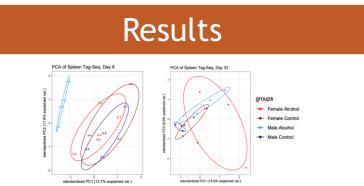
### Introduction

Moderate alcohol consumption has been identified as a protective factor against the development and aggravation of several autoimmune conditions<sup>1-3</sup>, but the mechanism by which an inflammatory substance can ameliorate autoimmunity is currently unknown. We have previously found that moderate alcohol administration reduces the severity of experimental autoimmune encephalomyelitis (EAE)<sup>4</sup>, a mouse model of the central nervous system autoimmune disease multiple sclerosis (MS). However, this result was sexually disparate and the beneficial effects were only observed in alcohol-consuming males. This study examined alcohol's sex-specific alterations to immune activation during EAE onset and recovery via splenocyte gene expression.



#### References

1. Andersen C, Sondergaard HB, Bang Oturai D, et al. Alcohol consumption in adolescence is associated with a lower risk of multiple sclerosis in a Danish cohort. *Mult Scler*. 2019;25:1572-1579.


2. Hardy CJ, Palmer BP, Muir KR, Sutton AJ, Powell RJ. Smoking history, alcohol consumption, and systemic lupus erythematosus: a case-control study. *Ann Rheum Dis.* 1998;57:451-455.

3. Lu B, Solomon DH, Costenbader KH, Karlson EW. Alcohol consumption and risk of incident rheumatoid arthritis in women: a prospective study. *Arthritis Rheumatol*. 2014;66:1998-2005.

4. Caslin B, Maguire C, Karmakar A, Mohler K, Wylie D, Melamed E. Alcohol shifts gut microbial networks and ameliorates a murine model of neuroinflammation in a sex-specific pattern. *PNAS*. 2019 Dec 17;116(51):25808-25815.

This work was supported by NIH Grant T32AA007471 and K08 26-1616-11.

We extend our gratitude to Drs. A. Harris, R. Messing, H. Hofmann, T. Jones, and K. Nixon for their support of this research.



**Figure 1. Principal component analysis of splenocyte gene expression by sex and alcohol consumption.** Alcohol-consuming males showed distinct splenocyte transcriptional profile during EAE onset (D9) compared to other groups. This effect was lost during the EAE recovery timepoint (D33) (*n=3-5 per group*).

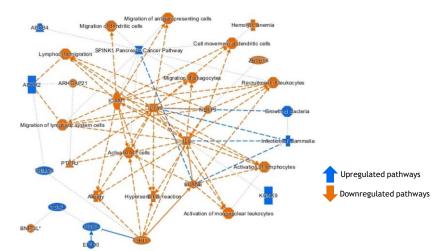



Figure 2. Day 9 post-induction transcriptional pathway analysis. Alcohol consumption downregulated IL-6 and IL-18 expression and associated pathways in splenocytes during EAE onset (n=3-5 per group).

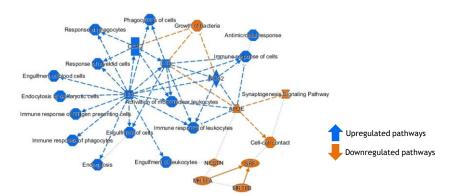
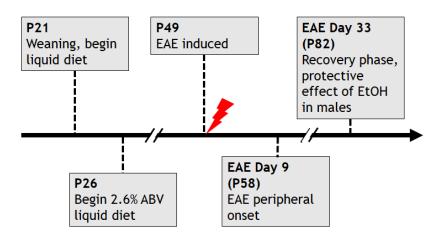




Figure 3. Day 33 post-induction transcriptional pathway analysis. Alcohol consumption upregulated IL-33 expression and phagocytosis-associated pathways in splenic macrophages during EAE recovery (n=3-5 per group).

# Methods

Male and female C57BL/6 mice (n=16-18 per group) were fed a 2.6% alcohol by volume (ABV) liquid diet (Lieber-DeCarli '82) from 5 days post-weaning for the duration of the experiment, with controls receiving an isocaloric 0% ABV version. EAE was induced at P49. Whole spleens were collected from randomly selected representatives from each group (n=3-5 per group) immediately prior to EAE induction (D0), 9 days post-induction (D9), and 33 days post-induction (D33). Spleens were flash frozen and RNA extracted via Qiagen RNeasy Miniprep Kit for Tag-Seq and analysis. Differential gene expression was analyzed by Ingenuity Pathway Analysis



#### Conclusions

Moderate alcohol consumption reduces peripheral inflammatory activation in splenocytes during EAE onset via downregulation of IL-6 and IL-18 expression and associated reductions in lymphocyte migration.

During the recovery phase of EAE, alcohol induces increased IL-33 expression and promotes anti-inflammatory pro-phagocytic activation in splenic macrophages.

#### Future directions:

- Examine whether observed changes are also detectable in resident macrophages of the central nervous system, the microglia.
- Investigate whether differentially activated macrophage-like cells within the central nervous system (CNS) during EAE are resident microglia or peripheral macrophages which have infiltrated and colonized the CNS.