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Dynorphin/Kappa Opioid Receptor Activity Within
the Extended Amygdala Contributes to Stress-
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ABSTRACT
BACKGROUND: While there is high comorbidity of stress-related disorders and alcohol use disorder, few effective
treatments are available and elucidating underlying neurobiological mechanisms has been hampered by a general
lack of reliable animal models. Here, we use a novel mouse model demonstrating robust and reproducible stress-
enhanced alcohol drinking to examine the role of dynorphin/kappa opioid receptor (DYN/KOR) activity within the
extended amygdala in mediating this stress-alcohol interaction.
METHODS: Mice received repeated weekly cycles of chronic intermittent ethanol exposure alternating with weekly
drinking sessions 6 forced swim stress exposure. Pdyn messenger RNA expression was measured in the central
amygdala (CeA), and DYN-expressing CeA neurons were then targeted for chemogenetic inhibition. Finally, a KOR
antagonist was microinjected into the CeA or bed nucleus of the stria terminalis to examine the role of KOR
signaling in promoting stress-enhanced drinking.
RESULTS: Stress (forced swim stress) selectively increased alcohol drinking in mice with a history of chronic
intermittent ethanol exposure, and this was accompanied by elevated Pdyn messenger RNA levels in the CeA.
Targeted chemogenetic silencing of DYN-expressing CeA neurons blocked stress-enhanced drinking, and KOR
antagonism in the CeA or bed nucleus of the stria terminalis significantly reduced stress-induced elevated alcohol
consumption without altering moderate intake in control mice.
CONCLUSIONS: Using a novel and robust model of stress-enhanced alcohol drinking, a significant role for DYN/KOR
activity within extended amygdala circuitry in mediating this effect was demonstrated, thereby providing further
evidence that the DYN/KOR system may be a valuable target in the development of more effective treatments for
individuals presenting with comorbidity of stress-related disorders and alcohol use disorder.

https://doi.org/10.1016/j.biopsych.2022.01.002
Stress is commonly regarded as a potent trigger for relapse
and a significant factor in promoting excessive alcohol
(ethanol) drinking (1–3). There is a high comorbidity between
stress-related disorders, including depression, anxiety disor-
ders, and posttraumatic stress disorder, and alcohol use dis-
order (AUD) (4–8). The prevalence and magnitude of the
problem underscores the importance of understanding
mechanisms underlying the influence of stress on alcohol use,
which is essential for developing new and more effective
treatment strategies for individuals with coexisting stress and
AUD.

Stress and alcohol exposure influence overlapping systems
and neural circuits in the brain, producing adaptations that
compromise the ability of individuals to engage in behavioral
flexibility that would enhance control over alcohol consump-
tion as well as appropriately respond to stressful events that
may provoke return to excessive drinking (9,10). Despite sig-
nificant advances in our understanding about how stress and
alcohol alter brain function, the mechanisms and neurocircuits
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underlying the complex interactions between stress and
alcohol consumption are not fully understood (11). Indeed,
demonstrating reliable and consistent effects related to the
interaction between stress and alcohol drinking in animal
models has been challenging (12–14). The general lack of
reliable preclinical models has, at least in part, impeded
progress toward developing effective therapeutics that espe-
cially target stress-related excessive drinking.

To address this shortcoming, we developed a mouse
model wherein repeated brief forced swim stress (FSS)
exposure interacts with chronic intermittent ethanol (CIE)
exposure to enhance alcohol drinking in dependent (CIE-
exposed) mice but not alter more moderate stable intake in
nondependent mice (15,16). Corroborating an earlier study in
rats (17), this stress-enhanced drinking in CIE-exposed mice
is robust and reproducible, having been demonstrated by
other research groups as well (18–20). Increased drinking in
mice with a history of both chronic alcohol exposure and
stress experience provides an ideal opportunity to use this
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CIE-FSS drinking model to probe mechanisms and potential
targets relevant to the problem of stress-related excessive
alcohol drinking.

Because both stress and chronic alcohol engage the
dynorphin/kappa opioid receptor (DYN/KOR) system, the role
of this neuropeptide system in chronic alcohol-related
dysphoria and elevated drinking has gained increasing
attention (21–23). DYNs are peptides derived from the pre-
cursor Pdyn (prodynorphin) that preferentially bind to KORs,
producing physiological and behavioral effects via inhibitory
G-protein coupling and other signaling cascades (24–27).
KOR activation has been shown to produce aversive/
dysphoric effects as indicated by measures of conditioned
avoidance and anxiety-like and depression-like behavior
(28,29). Stress exposure activates the DYN/KOR system,
eliciting dysphoria and anxiety-like behaviors (30) along with
elevated DYN immunoreactivity in brain regions that are in-
tegral to reward and stress circuitries involved in alcohol/drug
addiction (31).

Pharmacological manipulation of DYN/KOR activity has
been shown to alter behavioral responses to stress and
motivational effects of alcohol in a variety of experimental
conditions (22,32). Systemic administration of KOR antago-
nists has been shown to reduce high levels of alcohol con-
sumption associated with dependence and binge-drinking
models in rats (33,34) and mice (20,35,36). Evidence points to
involvement of the extended amygdala in mediating these ef-
fects. Interconnected brain structures comprising extended
amygdala circuitry, including the nucleus accumbens, central
amygdala (CeA), and bed nucleus of the stria terminalis
(BNST), are rich in DYN and KOR and highly responsive to
stress and chronic alcohol exposure (37–41). Direct infusion of
the KOR antagonist norbinaltorphimine (norBNI) into these
structures reduces excessive alcohol drinking in models of
dependence (42–44) and binge-like drinking (35,45). While we
recently demonstrated that systemic administration of a KOR
antagonist can block the ability of stress to enhance alcohol
consumption (36), the site of action mediating this effect is not
known.

This series of studies was designed to probe the role of
DYN/KOR activity in two prominent structures within extended
amygdala circuitry (CeA and BNST) as it relates to stress-
enhanced alcohol drinking. Specifically, our CIE-FSS drinking
model was used to 1) examine how a history of CIE and FSS
exposure, alone and in combination, affects expression of
Pdynmessenger RNA (mRNA) within the CeA; 2) determine the
effect of targeted chemogenetic silencing of DYN-expressing
neurons within the CeA (CeADYN neurons) on stress-
enhanced alcohol drinking; and 3) determine the contribution
of KOR signaling within the CeA and BNST in mediating the
ability of stress to further enhance elevated alcohol con-
sumption associated with dependence. Results from these
studies provide critical evidence indicating that a history of
chronic alcohol exposure and stress engage the DYN/KOR
system within the extended amygdala in mediating stress-
enhanced drinking. As such, these findings support recent
clinical efforts devoted to evaluating the therapeutic value of
targeting this neuropeptide system in reducing heavy drinking
in individuals comorbid with stress-related disorders and
AUD (46).
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METHODS AND MATERIALS

A detailed description of all experimental procedures, including
the CIE-FSS drinking model, assays for Pdyn mRNA mea-
surement, stereotaxic surgery, virus and drug infusions, his-
tology, and drug preparations, is provided in the Supplement.
CIE and FSS Drinking Model

All studies involved use of adult male C57BL/6J mice and
Pdyn-IRES-Cre mice (35,47) treated in the CIE-FSS drinking
model as previously described (15,16,36). Briefly, after estab-
lishing stable 1-hour daily ethanol (15% vol/vol) intake, mice
were separated into four groups: control (CTL), CIE-alone,
FSS-alone, and CIE1FSS. Mice received CIE vapor or air
exposure in inhalation chambers followed by test drinking
sessions for 5 consecutive days. This pattern of weekly CIE (or
air) exposure alternating with weekly test drinking sessions
was repeated for three or four cycles (Figure 1). Mice in the
FSS-alone and CIE1FSS groups experienced brief (10 min)
FSS exposure 4 hours prior to each of the test drinking ses-
sions. The remaining nonstressed mice (CTL and CIE groups)
were left in their home cage undisturbed.
Study Procedures

Effects of CIE and FSS Exposure on Pdyn mRNA
Expression in the CeA. C57BL/6J mice treated in the CIE-
FSS drinking model were sacrificed on the final day of test 4 at
30 minutes, 4 hours, or 24 hours after FSS exposure (or at
equivalent times for no-stress groups) (n = 6–10/group/time
point). Collection of CeA samples, RNA extraction, and Taq-
man quantitative reverse transcription polymerase chain re-
action assays were performed as previously described (48,49).

Effect of Chemogenetic Inhibition of DYN-Expressing
Neurons in the CeA on Alcohol Drinking in the CIE-
FSS Model. Adult male Pdyn-IRES-Cre mice received bilat-
eral infusions of a Cre-dependent virus containing an inhibitory
DREADD (designer receptor exclusively activated by designer
drugs) (AAV8-hSyn-DIO-hM4Di-mCherry) (n = 10 or 11/group)
or control virus (AAV8-hSyn-DIO-mCherry) (n = 6 or 7/group)
into the CeA to target CeADYN neurons as previously
described (35). After at least 2 weeks of recovery, the baseline
phase of the study commenced. On day 2 and day 4 of test 3,
mice were injected intraperitoneally with vehicle (0.9% saline)
or clozapine N-oxide (CNO) (3 mg/kg) to activate the DREADD.
The order of drug administration was counterbalanced for each
group.

Effect of KOR Antagonism in the CeA or BNST on
Alcohol Drinking in the CIE-FSS Model. C57BL/6J mice
received bilateral guide cannula positioned above the CeA (n =
7–9/group) or BNST (n = 8–10/group) (35,45). After at least 2
weeks of recovery, baseline drinking commenced. At 16 hours
prior to the start of the drinking session on day 3 of test 3,
separate groups of mice in each experimental condition
received microinjection of the KOR antagonist norBNI (2.5 mg/
side) or vehicle (13 phosphate-buffered saline) into the CeA or
BNST.
rg/journal
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Figure 1. CIE-FSS drinking model. Mice were
treated in the CIE-FSS drinking model involving
weekly CIE or air exposure cycles alternating with
weekly test drinking sessions (1 hour) with or without
FSS exposure (10 min; 4 hours prior to each drinking
session). Solid circles represent daily 1-hour drinking
sessions. After establishing stable baseline
drinking over 4 weeks, mice were separated into four
groups: CTL, CIE-alone, FSS-alone, and CIE1FSS
groups. Weekly CIE/air exposures alternated with
weekly (5 days) test drinking sessions for several
cycles. CIE, chronic intermittent ethanol; CTL, con-
trol; EtOH, ethanol; FSS, forced swim stress.
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Statistical Analysis

Alcohol intake (g/kg) was analyzed by analysis of variance
(ANOVA), with group (CTL, CIE, FSS, CIE1FSS) as a between-
subjects factor and test cycle (average weekly intake for
baseline and tests 1–4) as a repeated measure. Pdyn mRNA
expression in the CeA was expressed as a fold change from
the CTL condition and analyzed at each time point by ANOVA,
with group as the main factor. For the chemogenetic study,
alcohol intake and change in intake relative to vehicle was
analyzed by ANOVA, with group and virus as between-subject
variables and drug (CNO vs. saline) as a repeated measure. For
microinjection studies, ANOVAs included group and drug
(norBNI vs. vehicle) as between-subject variables and day as a
repeated measure in analyses of alcohol consumption
(average of days 3 and 4) and difference in intake from
respective vehicle group. When appropriate, significant main
effects and interactions were further analyzed using Newman-
Keuls post hoc comparisons. In chemogenetic and pharma-
cological studies, only data from subjects in which targeted
viral expression or placement of microinjectors were verified as
correct were used in analyses.

RESULTS

Combined CIE and Stress (FSS) Exposure Increases
Pdyn mRNA Expression in the CeA

While alcohol consumption remained relatively stable over
successive test cycles in the FSS-alone and CTL groups,
intake increased above baseline levels in the CIE-exposed
groups, with this effect most robust in the CIE1FSS group
(Figure 2A, B). This was supported by a significant group3 test
cycle interaction (F12,352 = 5.942, p , .001), which revealed a
modest increase in alcohol consumption in the CIE-alone
group, with intake during test 2 and test 4 greater than base-
line (ps , .05). Alcohol intake in the CIE1FSS group was
greater during all test weeks compared with their baseline level
Biological Psyc
of intake (ps , .001), and drinking was greater during each test
week in the CIE1FSS condition compared with the CIE-alone
group (ps , .05). Separate analysis of alcohol intake during the
final test period prior to sacrifice (test 4) revealed a main effect
of group (F3,88 = 13.025, p , .001). While alcohol intake for
CIE-alone and FSS-alone groups did not significantly differ
from the CTL group, CIE1FSS mice exhibited greater alcohol
intake than all other groups (ps , .001) (Figure 2C). These
results confirm our previous findings that FSS experience
selectively enhances alcohol drinking in dependent (CIE-
exposed) mice while not altering intake in nondependent (FSS-
alone) mice (15,16,36).

Analysis of Pdyn mRNA expression in the CeA at the end of
test 4 revealed main effects of group at 30 minutes (F3,30 =
7.055, p , .001) and 4 hours (F3,23 = 3.33, p = .037) following
the last FSS exposure but not at 24 hours after FSS (F3,27 =
0.415, p = .744). Post hoc analyses showed that Pdyn mRNA
expression was selectively elevated in the CIE1FSS group
relative to the CTL group at 30 minutes and 4 hours after FSS
exposure, with values normalizing at the 24-hour time point
(Figure 2D). Neither CIE-alone nor FSS-alone treatments pro-
duced an increase in Pdyn mRNA levels in the CeA. Schematic
depiction of bilateral tissue punches collected from the CeA is
shown in Figure 2E.

Chemogenetic Inhibition of CeADYN Neurons
Reduces Stress (FSS)-Enhanced Alcohol Drinking in
CIE-Exposed Pdyn-IRES-Cre Mice

Pdyn-IRES-Cre mice were used to target expression of an
inhibitory (hM4Di) DREADD or control virus in CeADYN neurons
(Figure 3A). Using this same strategy, we previously demon-
strated fidelity of expression and functionality of this viral
vector (35). In this study, expression of the mCherry marker
was confined to the CeA (Figure 3B).

Information on average weekly alcohol intake prior to
administering CNO during test 3 is provided in Table 1. ANOVA
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Figure 2. A history of CIE1FSS exposure in-
creases PdynmRNA expression in the CeA. (A)Mice
were sacrificed, and brain tissue was collected at 30
minutes, 4 hours, or 24 hours following the last FSS
exposure during test 4 (denoted by green star) to
assess Pdyn mRNA expression in the CeA (purple
triangles denote FSS exposures) (n = 6–10/group/
time point). (B) Average weekly alcohol consumption
across each phase of the study. Alcohol intake
increased compared with baseline in the CIE-alone
group during test 2 and test 4 (1ps , .05); alcohol
drinking in the CIE1FSS group was significantly
greater during each of the test cycles compared with
baseline (*ps , .05) and compared with the CIE-
alone group (

ˇ

ps , .05); alcohol intake in the FSS-
alone and CTL groups during test cycles did not
differ from baseline levels. (C) Average alcohol
consumption during test 4. Alcohol intake was
greater in the CIE1FSS group than in all other
groups, which did not significantly differ from each
other (#ps , .001). (D) PdynmRNA expression in the
CeA was significantly elevated in CIE1FSS
compared with CTL mice at 30 minutes (*p , .01)
and 4 hours (*p , .05) after FSS exposure at the end
of test 4, returning to CTL levels at 24 hours. All
values are mean 6 SEM. (E) Schematic represen-
tation of tissue punches collected from the CeA.
CeA, central amygdala; CIE, chronic intermittent
ethanol; CTL, control; FSS, forced swim stress;
mRNA, messenger RNA.
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revealed a main effect of group (F3,60 = 8.397, p , .001) and
test cycle (F2,120 = 22.632, p , .001) but no effect of virus
(F1,60 = 1.895, p = .174), indicating that viral expression did not
influence alcohol drinking prior to testing. A group 3 test cycle
interaction (F6,120 = 6.258, p , .001) was observed, and post
hoc analyses revealed increased alcohol intake in the CIE-
alone and CIE1FSS groups during test 1 and test 2
compared with their respective baseline levels of intake (ps ,

.05).
Analysis of alcohol intake during test 3 indicated a

marginally significant group 3 virus 3 drug interaction (F3,60 =
2.340, p = .082). Separate analysis of alcohol intake in mice
expressing hM4Di in CeADYN neurons revealed a significant
group 3 drug interaction (F3,38 = 8.521, p , .001). Following
vehicle (saline) administration, mice with a history of CIE alone
and CIE1FSS consumed more alcohol than CTL mice that
received vehicle (ps , .05). Furthermore, alcohol intake was
significantly greater in the CIE1FSS group than in the CIE-
alone condition (p , .005), whereas FSS alone did not
significantly alter alcohol consumption. Selective silencing of
CeADYN neurons following CNO injection resulted in signifi-
cant reduction in alcohol intake in the CIE1FSS group (p ,

.001). CNO injection produced a marginal reduction in drink-
ing in the CIE-alone group (p = .082) but did not alter alcohol
intake in the FSS-alone or CTL groups (Figure 3C). Similar
1022 Biological Psychiatry June 15, 2022; 91:1019–1028 www.sobp.o
analysis of alcohol consumption in mice treated with control
virus indicated a main effect of group (F3,22 = 16.14, p , .001)
but no group 3 drug interaction (F3,22 = 0.128, p = .381). As
expected, alcohol intake was significantly greater in CIE-alone
mice than CTL mice (p , .05), and stress further enhanced
this elevated drinking (CIE1FSS . CIE-alone) (p , .01).
Alcohol intake in the FSS-alone group did not differ from the
CTL group. CNO injection in mice that harbored the control
virus did not alter alcohol drinking in any of the groups
(Figure 3D).

To further examine the apparent selective effect of CNO in
mice treated with the active (hM4Di-containing) virus, data
expressed as a change from the vehicle (saline) condition for
each subject were analyzed (Figure 3E). Post hoc analysis of
the group 3 virus interaction (F3,60 = 2.34, p , .05) indicated
that CNO injection significantly reduced alcohol intake (relative
to vehicle) only in CIE1FSS mice that harbored active versus
control virus (p , .001), and this reduction was greater in
CIE1FSS mice compared with all other groups that were
treated with active virus (p values , .01). Thus, inactivation of
CeADYN neurons following CNO injection significantly attenu-
ated the ability of stress (FSS) to further enhance alcohol
consumption in CIE-exposed mice, and this effect was only
observed in mice treated with the inhibitory (hM4Di) DREADD-
containing virus.
rg/journal
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Figure 3. Chemogenetic inhibition of CeADYN

neurons attenuates stress-enhanced alcohol drink-
ing. (A) For targeted expression of an inhibitory
DREADD, Pdyn-IRES-Cre mice were bilaterally
infused with AAV8-hSyn-DIO-hM4Di-mCherry or
AAV8-hSyn-DIO-mCherry into the CeA 2 weeks prior
to start of baseline drinking; vehicle or CNO (3 mg/
kg) was injected 30 minutes prior to the second and
fourth drinking sessions during test 3 in a balanced
crossover design (denoted by green arrows). (B) Viral
expression was localized to the CeA as indicated by
visualization of mCherry fluorescence. (C) Average
alcohol intake in mice expressing hM4Di-containing
virus (n = 10 or 11/group). In vehicle-treated mice,
alcohol consumption was greater in CIE-alone and
CIE1FSS groups than in CTL and FSS-alone groups,
which did not differ (*ps , .05). In addition, intake
following vehicle injection was greater in CIE1FSS
mice than in CIE-alone mice (

ˇ

p , .005). Activation
of the inhibitory DREADD expressed in CeADYN

neurons via CNO injection resulted in a significant
reduction in alcohol intake in the CIE1FSS group
compared with those mice receiving vehicle (#p ,

.001). (D) Average alcohol intake in mice treated with
control virus (n = 6 or 7/group). Vehicle injection
resulted in the expected greater alcohol intake in
CIE-alone and CIE1FSS groups compared with the
other groups (*ps , .05), and intake was greater in
the CIE1FSS mice than in CIE-alone mice (

ˇ

p ,

.005). CNO injection did not alter alcohol drinking in
any group relative to when those mice received
vehicle injection. (E) Change from respective vehicle
alcohol intake across treatment and virus groups.
CNO injection significantly reduced alcohol intake
(relative to vehicle) in CIE1FSS mice that harbored
active vs. control virus (*p , .001), and this reduction
was greater in CIE1FSS mice compared with when
CNO was injected in CIE-alone, FSS-alone, and CTL
groups that were treated with active virus (#ps ,

.01). All values are mean 6 SEM. AP, ante-
roposterior; BLA, basolateral amygdala; CeA, central
amygdala; CIE, chronic intermittent ethanol; CNO,
clozapine N-oxide; CTL; control; D, dorsal; DREADD;
designer receptor exclusively activated by designer
drugs; DYN, dynorphin; FSS, forced swim stress; L,
lateral; LA, lateral amygdala; M, medial; V, ventral;
VEH, vehicle.

Table 1. Average Weekly Alcohol Intake Prior to Chemogenetic Inhibition of CeADYN Neurons

AAV Group Baseline Test 1 Test 2

hM4Di CTL 1.48 6 0.12 1.44 6 0.14 1.49 6 0.16

FSS 1.57 6 0.13 1.78 6 0.12 1.94 6 0.17

CIE 1.49 6 0.18 1.95 6 0.26a 1.84 6 0.20a

CIE1FSS 1.54 6 0.15 2.13 6 0.25a 2.54 6 0.22a

mCherry CTL 1.62 6 0.17 1.72 6 0.17 1.33 6 0.13

FSS 1.49 6 0.11 1.56 6 0.19 1.65 6 0.06

CIE 1.61 6 0.11 2.53 6 0.19a 2.37 6 0.20a

CIE1FSS 1.73 6 0.13 2.83 6 0.34a 2.57 6 0.32a

Alcohol intake (g/kg) in mice expressing hM4Di or mCherry in CeADYN neurons during baseline and test weeks prior to challenge with vehicle or
CNO (3 mg/kg) during test 3. Values are mean 6 SEM.

AAV, adeno-associated virus; CeADYN, dynorphin-expressing central amygdala; CIE, chronic intermittent ethanol; CNO, clozapine N-oxide; CTL,
control; FSS, forced swim stress.

aDiffers from respective baseline levels (p , .05).
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Intra-CeA Injection of a KOR Antagonist Blocks
Stress Enhancement of Alcohol Drinking in CIE-
Exposed Mice

Alcohol intake prior to microinjection of the KOR antagonist
during test 3 is shown in Table 2. ANOVA indicated significant
main effects of group (F3,64 = 14.823, p , .001) and test cycle
(F2,128 = 75.339, p , .001) and a group 3 test cycle interaction
(F6,128 = 12.882, p , .001). Post hoc analyses indicated that
alcohol intake in the CIE-alone and CIE1FSS groups during
test 1 and test 2 was greater than their respective baseline
levels of intake (ps , .05). In contrast, FSS alone did not alter
alcohol drinking in nondependent mice.

Microinjection of norBNI into the CeA during test 3
(Figure 4A, B) selectively attenuated elevated drinking in mice
with a history of CIE alone and CIE1FSS without affecting
more moderate levels of consumption in FSS-alone and CTL
groups (Figure 4C). This finding is supported by analysis of
average alcohol intake during the 2 days following vehicle or
norBNI microinjection, which revealed a significant group 3

drug interaction (F3,60 = 6.742, p , .001). Post hoc analyses
showed that vehicle-treated mice with a history of CIE alone
and CIE1FSS exposure consumed more alcohol than CTL
mice (p values , .005) and, replicating our earlier finding,
alcohol intake was significantly greater in CIE1FSS compared
with CIE-alone mice (p , .05). Microinjection of norBNI
reversed elevated alcohol intake in both CIE-alone and
CIE1FSS groups (ps , .01). Analysis of daily alcohol intake
during test 3 revealed a similar profile of results (Figure S2A, B).
To evaluate the relative magnitude of the norBNI effect across
all groups, data were also analyzed as a difference from the
average vehicle intake for each group. ANOVA revealed a
significant group 3 drug interaction (F3,60 = 6.742, p , .001),
and post hoc analysis indicated that while a trend was
apparent in the CIE-alone group (p = .125), norBNI significantly
reduced alcohol intake relative to the respective vehicle con-
dition only in the CIE1FSS group (p , .001). Furthermore, the
reduction in alcohol drinking following intra-CeA norBNI in-
jection (relative to vehicle) was significantly greater in the
CIE1FSS group compared with all other groups, which did not
differ from each other (ps , .01) (Figure 4D). Collectively, these
results suggest that blocking KOR signaling in the CeA was
especially effective in reducing stress-enhanced drinking in the
model. Schematic representation of injection sites for mice
Table 2. Average Weekly Alcohol Intake Prior to Injection of
KOR Antagonist Into CeA

Group Baseline Test 1 Test 2

CTL 1.88 6 0.07 2.19 6 0.09 1.89 6 0.08

FSS 1.90 6 0.08 2.37 6 0.15 2.03 6 0.12

CIE 1.88 6 0.08 2.82 6 0.11a 2.94 6 0.16a

CIE1FSS 1.82 6 0.08 3.04 6 0.14a 3.08 6 0.14a

Alcohol intake (g/kg) in mice during baseline and test weeks prior to
bilateral microinjection of vehicle of norBNI (2.5 mg/side) into the CeA
during test 3. Values are mean 6 SEM.

CeA, central amygdala; CIE, chronic intermittent ethanol; CTL,
control; FSS, forced swim stress; KOR, kappa opioid receptor;
norBNI, norbinaltorphimine.

aDiffers from respective baseline levels (p , .05).
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that received vehicle or norBNI into the CeA is shown in
Figure S3A and B, respectively.

Intra-BNST Injection of a KOR Antagonist Blocks
Stress Enhancement of Alcohol Drinking in CIE-
Exposed Mice

Given our previous work showing that KOR antagonism in the
BNST reduced heavy (binge-like) alcohol drinking (45) and that
dynorphinergic neurons in the CeA project to the BNST (40,50),
this study was conducted to examine whether blocking KOR
signaling in the BNST attenuates the ability of stress to further
enhance elevated drinking in CIE-exposed mice. As in previous
experiments, alcohol consumption increased over baseline
levels during test 1 and test 2 in the CIE-alone and CIE1FSS
groups, while intake remained relatively stable for the FSS-
alone and CTL groups (Table 3). This was supported by sig-
nificant main effects of group (F3,68 = 13.527, p , .001) and
test cycle (F2,136 = 21.644, p, .001) and the group3 test cycle
interaction (F6,136 = 9.009, p , .001).

Intra-BNST norBNI administration during test 3 (Figure 5A,
B) reduced elevated alcohol intake in the CIE-alone and
CIE1FSS groups without altering moderate intake in the FSS-
alone and CTL groups (Figure 5C). Analysis of average intake
during the 2 days after microinjection revealed a group 3 drug
interaction (F3,64 = 3.975, p = .012). Post hoc analyses showed
that alcohol intake following vehicle administration was
significantly greater in CIE1FSS mice compared with the CIE-
alone group (p , .01), and both groups consumed more
alcohol than FSS-alone and CTL mice (ps , .001), which did
not significantly differ from each other. Microinjection of
norBNI into the BNST significantly reduced elevated alcohol
consumption in the CIE-alone (p , .005) and CIE1FSS (p ,

.001) groups. Analysis of daily alcohol intake during test 3
produced a similar profile of results (Figure S4A, B). Analysis of
the difference in alcohol intake following intra-BNST norBNI
injection relative to the appropriate average vehicle intake for
each group revealed a significant group 3 drug interaction
(F3,64 = 3.975, p , .01). While intra-BNST norBNI reduced
alcohol drinking (relative to vehicle levels) in the CIE-alone
group (p = .024) and CIE1FSS mice (p , .001), this effect
was significantly more robust in the CIE1FSS group compared
with all other groups, including CIE-alone mice (ps , .05)
(Figure 5D). In contrast, norBNI injection into the BNST did not
alter alcohol intake in the FSS-alone or CTL groups. Schematic
representation of injection sites for mice that received vehicle
or norBNI into the BNST is shown in Figure S5A and B,
respectively.

DISCUSSION

Our studies validate the CIE-FSS drinking paradigm as a
framework for modeling stress-enhanced alcohol drinking and
demonstrate the significant contribution of DYN/KOR activity
within the extended amygdala in mediating this behavior. A
history of repeated FSS in CIE-exposed mice resulted in
escalation of voluntary alcohol consumption, and this was
accompanied by elevated Pdyn mRNA expression in the CeA.
Targeted chemogenetic silencing of DYN-containing neurons
in the CeA completely blocked the ability of stress to enhance
alcohol drinking in the model. Furthermore, pharmacological
rg/journal
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Figure 4. Microinjection of norBNI into the CeA
attenuates stress-enhanced alcohol drinking. (A)
Guide cannulae were implanted over the CeA 2
weeks prior to the start of baseline drinking; vehicle
or norBNI (2.5 mg/side) was infused 16 hours prior to
the third drinking session during test 3 (denoted by
green arrow). (B) Schematic representation of ste-
reotaxic bilateral placement of guide cannulae over
the CeA. (C) Average alcohol intake (over day 3 and
day 4) in mice receiving vehicle (n = 7–9/group) or
norBNI (n = 8 or 9/group) injection in the CeA.
Vehicle-treated CIE-alone and CIE1FSS groups
consumed significantly more alcohol than CTL and
FSS-alone groups (which did not differ) (*ps , .05),
and alcohol intake was greater in CIE1FSS than in
CIE-alone mice (

ˇ

p , .05); norBNI treatment
blocked elevated drinking in CIE-alone (#p , .01)
and CIE1FSS (##p , .001) groups without altering
intake in the FSS-alone or CTL groups. (D) Differ-
ence from respective vehicle alcohol intake across
treatment groups. Intra-CeA norBNI injection
significantly reduced alcohol intake (relative to
vehicle) only in the CIE1FSS group (***p , .001),
and this effect was significantly greater in the

CIE1FSS group compared with all other groups, which did not differ from each other (##ps , .01). CeA, central amygdala; CIE, chronic intermittent ethanol;
CTL, control; FSS, forced swim stress; norBNI, norbinaltorphimine.
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blockade of KOR within the CeA or BNST normalized drinking
in mice with a history of both stress and CIE exposure.
Together, these data suggest that CeADYN neurons are
uniquely responsive to a history of chronic alcohol exposure
and stress, and KOR signaling within the CeA and BNST plays
an important role in mediating stress-enhanced alcohol
drinking.

While chronic alcohol exposure and stress are known to
produce dynamic alterations in brain gene expression (51–55),
only recently have genomic changes in relation to stress-
alcohol interactions been explored (18). This latter study
revealed both unique transitory and long-lasting changes in
gene expression in the prefrontal cortex associated with
stress-enhanced alcohol consumption in the CIE-FSS drinking
model. In this study, we show that Pdyn mRNA levels in the
CeA are elevated at 30 minutes and 4 hours after FSS expo-
sure only in mice with a history of both FSS and CIE exposure.
This change was not observed in other groups (CIE-alone and
FSS-alone conditions) that did not exhibit increased alcohol
intake relative to the CTL condition. Studies in rats have shown
Table 3. Average Weekly Alcohol Intake Prior to Injection of
KOR Antagonist Into BNST

Group Baseline Test 1 Test 2

CTL 1.97 6 0.12 1.85 6 0.12 1.84 6 0.15

FSS 2.02 6 0.19 2.18 6 0.12 2.02 6 0.16

CIE 2.13 6 0.13 2.84 6 0.13a 2.99 6 0.16a

CIE1FSS 1.99 6 0.12 2.88 6 0.12a 2.93 6 0.15a

Alcohol intake (g/kg) in mice during baseline and test weeks prior to
bilateral microinjection of vehicle of norBNI (2.5 mg/side) into the BNST
during test 3. Values are mean 6 SEM.

BNST, bed nucleus of the stria terminalis; CIE, chronic intermittent
ethanol; CTL, control; FSS, forced swim stress; norBNI,
norbinaltorphimine.

aDiffers from respective baseline levels (p , .05).
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an upregulation in PdynmRNA expression in the CeA following
chronic alcohol drinking (56) and acute withdrawal from CIE
exposure (43). FSS experience also has been reported to in-
crease Pdyn mRNA levels in extended amygdala structures
(57,58). Together, these findings indicate that the CeA is highly
responsive to stress and chronic alcohol exposure, and
changes in Pdyn transcriptional activity may contribute to
enhanced motivation to drink following combined stress and
chronic alcohol exposure.

The CeA is a key structure within extended amygdala cir-
cuitry with rich expression of both DYN and KORs (38–40). In
this study, using a validated transgenic mouse model (47)
along with a validated DREADD-containing viral construct (35),
targeted chemogenetic inactivation of CeADYN neurons
blocked stress-enhanced alcohol drinking. Vehicle injections in
mice expressing the inhibitory (hM4Di) DREADD did not alter
alcohol drinking, and reduced alcohol intake in mice injected
with CNO is not likely to be attributed to off-target effects of
CNO because the ligand did not alter alcohol consumption in
mice that received control virus treatment. Using a similar
experimental strategy, silencing CeADYN neurons was shown
to significantly reduce alcohol consumption in a binge-drinking
model (35). Likewise, genetic deletion of Pdyn in the CeA
reduced alcohol drinking in models of high intake (38).
Together, these data indicate that dynorphinergic activity in the
CeA plays a significant role in regulating alcohol consumption,
including elevated drinking associated with stress.

CeADYN neurons produce effects through signaling at KORs
locally within the CeA as well as in several projection regions.
Studies have shown that the KOR antagonism within the CeA
and other extended amygdala structures (e.g., BNST) reduces
alcohol drinking (35,42,43,45), and this is congruent with
findings showing that systemic administration of KOR antag-
onists reduces alcohol consumption in a variety of models
(20,22,33–36). Results from this study indicate that direct in-
jection of the KOR antagonist norBNI into the CeA or BNST
hiatry June 15, 2022; 91:1019–1028 www.sobp.org/journal 1025
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Figure 5. Microinjection of norBNI into the BNST
attenuates stress-enhanced alcohol drinking. (A)
Guide cannulae were implanted over the BNST 2
weeks prior to the start of baseline drinking; vehicle
or norBNI (2.5 mg/side) was infused 16 hours prior to
the third drinking session during test 3 (denoted by
green arrow). (B) Schematic representation of ste-
reotaxic bilateral placement of guide cannulae over
the BNST. (C) Average alcohol intake (over day 3
and day 4) in mice receiving vehicle (n = 8–10/group)
or norBNI (n = 8–10/group) injection in the BNST.
Following vehicle injection, CIE1FSS mice
consumed significantly more alcohol than the CIE-
alone group (

ˇ

p , .05), and both CIE1FSS and
CIE-alone groups consumed more alcohol than CTL
and FSS-alone groups (which did not differ) (*ps ,

.05); norBNI treatment blocked elevated drinking in
CIE-alone (#p , .005) and CIE1FSS (##p , .001)
groups without altering intake in the FSS-alone or
CTL groups. (D) Difference from respective vehicle
alcohol intake across treatment groups. Intra-BNST
norBNI injection significantly reduced alcohol intake
(relative to vehicle) in the CIE-alone group (*p , .05)
and the CIE1FSS group (***p, .001), and this effect
was significantly greater in the CIE1FSS group

compared with all other groups, which did not differ from each other (#ps, .05). BNST, bed nucleus of the stria; CIE, chronic intermittent ethanol; CTL, control;
FSS, forced swim stress; norBNI, norbinaltorphimine.
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blocked the ability of stress to enhance voluntary alcohol
drinking in the CIE1FSS group. Thus, these are the first data to
directly implicate a role for DYN/KOR activity within extended
amygdala circuitry in contributing to stress-induced excessive
drinking. While there is evidence for dynorphinergic projections
from the CeA to the BNST (40,50), the extent to which these
results are mediated by KOR signaling within the CeA and
other projection sites, including the BNST, will require more
direct circuitry-based examination.

CeADYN neurons are primarily GABAergic (gamma-amino-
butyric acidergic) and known to coexpress other neuropep-
tides that influence alcohol drinking, such as corticotropin
release factor and neurotensin (59,60). Thus, co-release of
GABA (gamma-aminobutyric acid) and other peptides may
contribute to stress-enhanced drinking in this model, and this
possibility cannot be ruled out. However, results from our
chemogenetic and pharmacological studies strongly implicate
a significant role for engagement of DYN/KOR activity within
extended amygdala circuitry in the ability of stress to further
elevate alcohol consumption in subjects with a history of
chronic alcohol exposure.

While stress-enhanced drinking in the CIE-FSS model has
been demonstrated in both female and male mice (61,62), one
limitation of this study is that only male mice were used to
examine the role of DYN/KOR activity. Sex-related differences
in sensitivity to DYN/KOR function have been noted, especially
regarding reward and aversion/dysphoria-related behaviors
(63–65). Thus, it will be important in future studies to examine
whether manipulation of DYN/KOR activity within extended
amygdala circuitry produces sex-related differences in stress-
enhanced alcohol drinking. This is especially relevant given the
high prevalence of co-occurring stress-related disorders and
AUD in women (5,8).

In summary, despite stress being a significant contributing
factor in heavy drinking, as reflected by high comorbidity of
1026 Biological Psychiatry June 15, 2022; 91:1019–1028 www.sobp.o
stress-related disorders and AUD, few effective treatments are
available, and the lack of preclinical models that reliably
demonstrate stress-enhanced drinking has hindered efforts to
address the problem. We have established a model demon-
strating robust and highly reproducible stress-induced eleva-
tion of alcohol consumption. Using chemogenetic and
pharmacological approaches, we show that DYN/KOR activity
within extended amygdala circuitry plays a significant role in
mediating the ability of stress to increase drinking in mice with
a history of chronic alcohol exposure. These findings align with
other preclinical studies showing that long-acting (20,33–35)
and short-acting (36,66,67) KOR antagonists reduce high
levels of alcohol consumption and relapse-like behavior pro-
voked by stress. Together, these results support clinical
studies that target the DYN/KOR system in the development of
more effective treatments for individuals presenting with co-
morbidity of stress-related disorders and AUD (46,68).
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